If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=91
We move all terms to the left:
w^2-(91)=0
a = 1; b = 0; c = -91;
Δ = b2-4ac
Δ = 02-4·1·(-91)
Δ = 364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{364}=\sqrt{4*91}=\sqrt{4}*\sqrt{91}=2\sqrt{91}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{91}}{2*1}=\frac{0-2\sqrt{91}}{2} =-\frac{2\sqrt{91}}{2} =-\sqrt{91} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{91}}{2*1}=\frac{0+2\sqrt{91}}{2} =\frac{2\sqrt{91}}{2} =\sqrt{91} $
| 2(6-y)+4y=20 | | -3x-16=5x | | 4p+7=p-1 | | 150x=150x | | g-21=24 | | 3(12x-4)=240 | | 18x+12=16x-10 | | k-97=-93 | | 5x+19=-9-2x | | -14x+8=3x-26 | | -9x-1=2-6x | | 6x+1=7+8x | | x+3=10x-6 | | -5x=18+4x | | 5(4-0.6x)=-40 | | (3x+12)=(6x+15) | | 3x-12=7x-2 | | 0.2x+3=0.5x-27 | | 8x+16=7x-2 | | 4(x-5)=160 | | D(t)=3t-4 | | a10=3(10+4) | | 65-x=39 | | 3y+9=5y-11 | | 2b+7=3b-2 | | 3-5(x-1)=6-4x | | A=6x+64 | | 10(4x-8)=2 | | 7x-2=6x+26 | | 8/80x=72 | | y=7/8-1 | | 5^(x+1)+5^(x+2)=750 |